A neural network approach for attenuation relationships: An application using strong ground motion data from Turkey
نویسندگان
چکیده
This paper presents an application of neural network approach for the prediction of peak ground acceleration (PGA) using the strong motion data from Turkey, as a soft computing technique to remove uncertainties in attenuation equations. A training algorithm based on the Fletcher–Reeves conjugate gradient back-propagation was developed and employed for three sample sets of strong ground motion. The input variables in the constructed artificial neural network (ANN) model were the magnitude, the source-to-site distance and the site conditions, and the output was the PGA. The generalization capability of ANN algorithms was tested with the same training data. To demonstrate the authenticity of this approach, the network predictions were compared with the ones from regressions for the corresponding attenuation equations. The results indicated that the fitting between the predicted PGA values by the networks and the observed ones yielded high correlation coefficients (R). In addition, comparisons of the correlations by the ANN and the regression method showed that the ANN approach performed better than the regression. Even though the developed ANN models suffered from optimal configuration about the generalization capability, they can be conservatively used to well understand the influence of input parameters for the PGA predictions. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Development of a regional attenuation relationship for Alborz, Iran
New attenuation relationships for rock and soil in Alborz, have been developed in this study. When the quantity of usable ground-motion data is inadequate in the magnitude and distance ranges, development of an empirical prediction equation is deficient. Due to lack of data, the two well-known simulation techniques, point source and finite-fault models have been used to generate more than ten t...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملGeneration and Comparison of Different Forms of Attenuation Relationships for the Western Anatolia, Turkey
The western Anatolia is one of the good examples of fast intra-continental extensional tectonics with active extensional stress rate about 3-4 cm/year. Increasing lithospheric thinning causes increasing geothermal activities in the region and active tectonics has generated seismic activity with destructive earthquakes. Moderate sized earthquakes in the region are actually the dominant source of...
متن کاملGENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کاملDETERMINATION OF ATTENUATION RELATIONSHIPS USING AN OPTIMIZATION PROBLEM
The main objective of this study is to present new method on the basis of genetic algorithms for attenuation relationship determination of horizontal peak ground acceleration and spectral acceleration. The proposed method employs the optimization capabilities of genetic algorithm to determine the coefficients of attenuation relationships of peak ground and spectral accelerations. This method ha...
متن کامل